
Reasoning About Action I:
A Possible Worlds Approach

Matthew L. Ginsberg
David E. Smith

Computer Science Department

Stanford University

Stanford, California 94305

Reasoning About Action I:

A Possible Worlds Approach

Abstract

Reasoning about change is an important aspect of commonsense reasoning and planning.

In this paper we describe an approach to reasoning about change for rich domains where

it is not possible to anticipate all situations that might occur. The approach provides a

solution to the frame problem, and to the related problem that it is not always reasonable to

explicitly specify all of the consequences of actions. The approach involves keeping a single

model of the world that is updated when actions are performed. The update procedure

involves constructing the nearest world to the current one in which the consequences of the

actions under consideration hold. The way we �nd the nearest world is to construct proofs

of the negation of the explicit consequences of the expected action, and to remove a premise

in each proof from the current world. Computationally, this construction procedure appears

to be tractable for worlds like our own where few things tend to change with each action, or

where change is regular.

1 Introduction

1.1 The problem

An important aspect of commonsense reasoning is the ability to reason about change. For

example, imagine a robot responsible for various household chores. It must be able to infer

that if it moves the lamp, the shade and cord move, too. But when it tries to move the

bookcase, with the lamp on top, the cord will come tight, and the lamp will fall o� and

break. On the other hand, a napkin, or piece of paper on top of the bookcase might utter

o�, but probably wouldn't cause any harm. Then too, the robot must know where to �nd

things, like the vacuum, the carpet, the closet, or the bookcase. This requires the ability to

infer that furniture and appliances stay in the same place unless speci�cally moved, and that

these objects don't change their shape or color unless someone deliberately modi�es them.

There are e�ectively an in�nite number of such reasoning situations that a household robot

might come up against. It is therefore essential to its function that the robot be able to reason

about actions and their e�ects on the world. Such abilities are also essential in somewhat

more specialized domains, such as reasoning about mechanical devices and processes, and

reasoning about analog circuits. For these applications a reasoner must be able to infer what

will happen when various adjustments or stimuli are applied, or when parts malfunction.

Reasoning about action gives rise to three classical problems. The �rst is the frame

problem, recognized and so named by McCarthy and Hayes [23]. The di�culty is that of

1

indicating and inferring all those things that do not change when actions are performed and

time passes. For example, when the lamp is moved from the bookcase to the endtable, we

need to determine that the vacuum cleaner and the carpet remain stationary, and do not

change shape or color.

The second, and closely related problem, is the rami�cation problem (so named by Finger

[6]). The di�culty is that it is unreasonable to explicitly record all of the consequences of

actions. For example, if we move the bookcase, all of the books inside move along with it.

The papers and doilies on top move also. The arrangement of furniture is changed, and

certain parts of the carpet become covered or uncovered. Some of the heating ducts and

pictures may also be blocked. For any given action there are essentially an in�nite number

of possible consequences that might occur, depending upon the details of the situation in

which the action occurs.

The third problem is called the quali�cation problem, also named by McCarthy [20]. The

problem is that the number of preconditions for each action is immense. Imagine all of the

things that could prevent the robot from moving the bookcase: it could be too heavy with

all of the books in it, it could be too fragile to survive the move, it could be fastened to the

oor, the oor where we might want to put it might be too weak to hold it, the door might be

too small, the house might catch on �re, or there might be a nuclear war. Computationally,

we cannot a�ord to check all of these unlikely possibilities explicitly.

In this paper we focus on the frame and rami�cation problems|speci�cally, our objective

is to provide a formal mechanism for reasoning about action that provides 1) an epistemolog-

ically convenient way of expressing information about the domain, and 2) a computationally

e�ective means of reasoning about the consequences of actions. In doing so, we will assume

that not all of the consequences of actions are explicitly described. We will, however, ignore

the quali�cation problem, assuming that all of the quali�cations for the actions being con-

sidered are explicitly provided. In [11, 12] we show how the same techniques can be used to

advantage in solving the quali�cation problem.

1.2 Classical approaches

1.2.1 The monotonic approach

The earliest proposal for formalizing reasoning about change is due to McCarthy [19, 23]. The

approach involves providing explicit axioms for inferring what propositions hold following

each possible action. These axioms are of two sorts: 1) action axioms indicating the things

that change when each action takes place, and 2) frame axioms indicating the things that

remain una�ected by each action.

As an example, consider a simple move operation for our household robot. If an object,

x, and destination, l, are both clear, moving x to l will result in x being at l following the

action. Formally, we can express this as:

clear(x)s ^ clear(l)s ! on(x; l)do(move(x;l);s);

2

where the notation ps means that the proposition p holds in the situation (or at the time) s,

and the expression do(a; s) refers to the situation (or time) when the action a is completed.1

In addition to this action axiom, we need frame axioms indicating the facts that are

una�ected when a move action takes place. For example, we need a frame axiom stating

that all other objects don't move. This can be expressed as:

on(y; l0)s ^ y 6= x! on(y; l0)do(move(x;l);s):

Similarly, we need frame axioms stating that moving does not change the color or shape of

objects:
color(x; c)s ! color(x; c)do(move(u;v);s);

shape(x; c)s ! shape(x; c)do(move(u;v);s);

and so forth.

There are two basic problems with the monotonic approach | an epistemological one, and

a computational one. The epistemological di�culty is that we must provide explicit frame

axioms for every action and every relation of interest, stating under what circumstances

facts involving the relation don't change when the action is performed. In general, if there

are a di�erent possible actions, and r di�erent relations, on the order of ar frame axioms

are required in order to determine which facts persist from one time to the next.2 To make

matters worse, these axioms may be very complex. Witness the case of the on relation for a

move operation: If the object being considered is a piece of paper on a bookcase, the paper

will stay when the bookcase is moved, but if the object is a lamp, it will stay if the bookcase

is not moved far, but will fall o� if the lamp is plugged in and the bookcase is moved beyond

the reach of the cord. In short, the monotonic approach is cumbersome at best because the

set of frame axioms required is large and complex, and must be constantly augmented as

additional relations or actions are added.

The second problem with the monotonic approach is that it is computationally intractable

if there are many facts in the database. To determine what is true after some action or event

has taken place, the reasoner must examine every fact in its world model, and prove that

it still holds. If the database contains n facts and each action only changes one fact, n � 1

deductions will have to be performed for each action or event that takes place.

1.2.2 The default approach

The basic problem with the monotonic approach is that we need to state all of the things

that don't change explicitly. What we want to do is provide axioms only for the things that

change and write a single default axiom stating that everything else persists. There are many

di�erent nonmonotonic formalisms that could be used for this purpose [25, 21, 22, 24]. The

1We are being deliberately vague about whether we are using situation calculus, or a temporal logic such

as that of Allen [1]. Although the monotonic approach was originally conceived in the situation calculus,

the approach is equally applicable to temporal logics.
2Yoav Shoham has pointed out that frame axioms are also needed for compound sentences. We are

assuming here that the database consists of only atomic facts and their negations.

3

basic idea in all of these formalizations is to write an axiom stating that facts persist in the

absence of information to the contrary. Using Reiter's default rules [25] we could express

this as:
ps : pdo(a;s)

pdo(a;s)
(1)

which states that if p is true in situation (or time) s and p is still consistent after the action

a then we can infer p after the action.3

The default approach does not su�er from the epistemological di�culties inherent in the

monotonic approach because only a single default rule is required, independent of the number

of relations and actions appearing in the domain. However, the default approach still su�ers

from serious computational problems; to determine what is true about the world after an

action has been performed, the default frame axiom must be examined once for every fact

of interest.

1.2.3 The STRIPS approach

An entirely di�erent approach to reasoning about change is the STRIPS approach [5]. The

basic insight in STRIPS is that the world does not change much from one instant to the next.

Thus STRIPS keeps a single model of the world that is updated to reect the result of any

action that takes place. The STRIPS approach describes actions in terms of preconditions,

add lists and delete lists. The intention is that a given action can be executed if all of its

preconditions are satis�ed. The result of the execution is to add the facts in the add list to

the world description while removing the facts in the delete list.

While this approach provides an e�ective solution to the frame problem, it cannot handle

inferred consequences, and thus fails to solve the rami�cation problem. All consequences of

actions must be explicitly listed in the add and delete lists, and the system designer is

responsible for maintaining satisfactory descriptions of the actions. As the domain becomes

more complex, this becomes an increasingly di�cult task. Consider our robot/furniture

example; if the bookcase is moved from one location to another, where it obscures vents or

pictures, all of these consequences must be explicitly provided in the add and delete lists. In

addition, the absolute locations of the television, bird and bird cage change. If there were a

lamp on top, moving the bookcase would cause the cord to tighten, and the lamp would fall

o� and break. All of these consequences would have to be speci�ed explicitly in the add and

delete lists for the action. This makes the descriptions of actions cumbersome and di�cult

for complex domains. Furthermore, if new facts are ever added to the database, such as the

weight on various locations of the oor, all actions that can potentially a�ect those facts

must be updated. This is also a cumbersome task.

3Hanks and McDermott [14] have pointed out a serious technical di�culty with representing default

frame axioms using nonmonotonic formalisms. The basic problem is that these formalisms allow unintended

extensions in addition to those one would expect. Much recent work in nonmonotonic logic has been aimed

at solving this problem [16, 18, 17, 28]. Although the attempts di�er considerably in terms of speci�cs, the

basic default approach remains unchanged. Since this issue is not the primary concern of this paper, we will

continue to characterize these approaches in terms of the straightforward default rule given above.

4

These problems with STRIPS are actually a reection of a more general problem. It is

remarked in [7] that the problem of maintaining consistency of a database in the presence

of new information is at best semi-decidable. It is therefore not theoretically possible for

STRIPS to achieve this consistency maintenance via the simple mechanism of delete lists.

The STRIPS designers were aware of this. They got around the problem by requiring

that the knowledge base contain only facts of a very speci�c nature, essentially guaranteeing

through this that their description retains consistency. It is not clear how to maintain the

validity of the restrictions on the knowledge base (essentially that it contain only atomic

propositions) in more complex domains. Lifschitz [15] has also discussed this issue, and

concludes that the approach used in STRIPS is viable when the facts used to describe the

world can be guaranteed to be chosen from some predetermined set. Lifschitz calls the

sentences in this predetermined set essential.

As our example illustrates, this is an increasingly restrictive assumption as the domain

becomes more complex. The reason is that our domain information may increasingly be

non-atomic (e.g., \all of the books are in the bookcase"), and it will be di�cult to specify

the form of this information in advance.

1.3 The Possible Worlds Approach

Suppose that we are given an action and a situation. Our approach to reasoning about

action is to take the result of the action to be the nearest world to the given one in which

the consequences of the action hold. For example, if our robot were considering moving the

bookcase from one location to another, the expected result would be the nearest world to

the current one in which the bookcase was at its new location. In this world, the bookcase

would no longer be at its old location, and everything on or in it would also be at the new

location. Furthermore, heating ducts and pictures might be covered in this new world as a

result of the new position of the bookcase.

The way we �nd the nearest world is to construct proofs of the negation of the explicit

consequences of the expected action, and remove a premise in each proof from the current

world. In the case of the robot, one proof that the bookcase cannot be at its new location is

based on the fact that it is at its old location, and that an object cannot be in two places at

once. One of these two statements must therefore be removed, and the latter has the status

of a domain constraint or protected law. Another proof that the bookcase cannot be in its

new location stems from the fact that the heating duct is not obscured, and the bookcase

would obscure it. Therefore the former fact must also go, and so forth. Computationally,

this construction procedure appears to be tractable for worlds like our own where very few

things tend to change with each action, or where change is regular.

We will refer to the nearest world for an action in a situation as a possible world, and will

refer to our approach as the possible worlds approach. Formally, this approach is very similar

to the default approach; we will show in Section 4 that, given the same set of axioms and

domain constraints, the two approaches normally yield the same result. Computationally,

however, the approaches di�er, in that a clear and e�ective implementation exists for the

5

possible worlds approach, but not for the default approach.

The computational mechanism used by the possible worlds approach is, in many respects,

similar to the STRIPS approach. Like STRIPS, the result of an action is characterized as

an update to a single model of the world corresponding to the sentences that are true at the

time the action is performed.4

However, unlike the STRIPS approach, the possible worlds approach does not require a

complete description of the consequences of each action. Instead, the world model is updated

inferentially from the explicitly stated consequences of the action, and domain constraints.

The domain constraints specify the relationships of di�erent things in the world, such as

the relationship between one object being on another object, and the locations of the two

objects.

1.4 Conventions

Standard �rst-order predicate calculus will be used throughout this paper to represent sen-

tences about the world. Variables are written in italics; free variables are assumed to be

universally quanti�ed. We will also use standard mathematical notation for dealing with

sets; the symbol � will be used to mean strict set inclusion.

For simplicity, we will use the situation calculus throughout the remainder of the paper.

As mentioned earlier, the notation ps will mean that the proposition p holds in the situation

s, and the expression do(a; s) refers to the situation when the action a is completed.

The restriction to situation calculus does not appear to be a fundamental limitation.

Historical information or information about the future could still be maintained using a

temporal logic such as that of Allen [1]. In such a case, the situation in which an action or

event takes place is just considered to be the collection of sentences that hold at the time at

which the action or event begins.

1.5 Organization

The following section (Section 2) describes the basic possible world construction. This for-

malization is also discussed in somewhat greater detail in [7]. Section 3 presents a formal-

ization of actions and of reasoning about actions that naturally incorporates an implicit

description of the necessary frame axioms.

The bulk of the paper (Section 4) consists of comparisons of the computational character-

istics of our approach with other approaches to reasoning about action. First, in Section 4.1,

we examine the space requirements of the various approaches. In particular we consider the

relationship between the number of frame axioms required for the monotonic approach, and

the number of domain constraints required for the default and possible worlds approaches.

4Both the STRIPS approach and the possible worlds approach avoid the Hanks-McDermott problem [14],

since actions are described by incremental changes to a database as opposed to being described by formulae

that are universally quanti�ed over time or situations.

6

We also consider the space requirements of an equivalent STRIPS add and delete list repre-

sentation for those cases where it is possible. In Section 4.2 we go on to consider the time

requirements of the di�erent approaches, both for investigating a single proposition and for

deriving the entire world state resulting from a sequence of n actions. For the monotonic

approach, this involves considering the number of frame axioms that must be examined; for

the default and possible worlds approaches, this involves considering the number of domain

constraints that must be examined.

2 Possible worlds

2.1 Theoretical construction

We �rst de�ne a partial world to be any consistent collection of sentences describing the

domain in question. There will in general be many speci�c sentences that are logically

independent of the domain description; these will be left undetermined in the partial world

being considered.

Now, suppose that we have some partial world S describing the current situation, and

wish to add the facts in some new set C. The problem is that we cannot simply take the

union of the two sets, S [C, because C may be inconsistent with S.

Instead, we will consider consistent subsets of S [C that contain C. In considering these

subsets, there will also be other facts in S that we want to preserve. Domain constraints

often have this property; consider a blocks world fact such as

on(x; y) ^ y 6= z ! :on(x; z); (2)

indicating that a block can be in only one place at a time. This constraint can be expected

to hold independent of the modi�cations we might make to our world description. We cater

to this formally by supposing that we have identi�ed some set P containing all of those

sentences in our language having this \protected" or preferred status.

De�nition 2.1 Given a set S of logical formulae, a set P of protected sentences, and an

additional set of formulae C, a potential world for C in S is de�ned to be any subset T � S[C

such that:

1. C � T . T contains the formulae in C that are explicitly to be added in constructing

the new partial world.

2. P \ S � T . Any protected sentence in S is preserved when the partial world is

constructed.5

3. T is consistent.

5It might seem more natural to assume that P � S, so that S already contains all protected formulae,

and this is in fact done in [7]. The formulation used here is needed for the treatment of the quali�cation

problem in [11, 12].

7

Note that the \nearness" of a potential world for C in S to the original world S is reected

by how large the subset is. Thus, if T1 and T2 are both potential worlds for C in S, and

T1 � T2, T2 is at least as close to S as T1 is. This leads us to de�ne a nearest potential world

or possible world for C in S as any potential world for C in S that is not a subset of any

other potential world for C in S.6

De�nition 2.2 Given a set S of logical formulae, a set P of protected sentences, and an

additional set of formulae C, a possible world for C in S is de�ned to be any subset T � S[C

such that:

1. C � T ,

2. P \ S � T ,

3. T is consistent,

4. T is maximal subject to these constraints.

This de�nition closely follows that of [7] and, as mentioned there, is similar to notions

developed by Fagin et. al. [4] in considering the semantics of database updates.

We will denote the collection of all possible worlds for C in S by W (C;S).

2.2 An example

In order to illustrate this construction, let us introduce an example similar to that described

in Section 1. The example is shown in Figure 1.

The domain in question contains a table, a chest, a plant, a piece of �ne art and a

bookcase (which itself contains a bird and a television). Ventilation for the room is provided

by a pair of ducts under the oor; if both of these are blocked, the room becomes stu�y.

Putting an object on the table will obscure the picture.

Formally, the initial situation shown in the �gure can be described as follows (the * and

symbols should be ignored for the moment):

on(bird,top-shelf) rounded(bird)

*# on(tv,bottom-shelf) rounded(plant)

on(chest,floor)

* on(plant,duct2) duct(duct1)

on(bookcase,floor) duct(duct2)

* blocked(duct2) in(bottom-shelf,bookcase)

:obscured(picture) in(top-shelf,bookcase)

:stuffy(room)

(3)

6Note that both potential worlds and possible worlds are only partial. The phrase \possible partial world"

seems rather unwieldy, however.

8

��@@��@@��@@��@@��@@��@@

��
��@@��@@��@@��@@��@@��@@

��@@

h

bb""

B
B
BB �

�
��

@@
@@
@@

��
��
��

'$h.�
�
�
�HH

@
@@�

���
�

�
�s

Figure 1: A household domain

There are also the associated domain constraints:

on(x; y) ^ y 6= z ! :on(x; z) (4)

on(x; y) ^ z 6= x ^ y 6= floor ! :on(z; y) (5)

rounded(x) ! :on(y; x) (6)

duct(d) ^ 9x:on(x; d) ! blocked(d) (7)

9x:on(x; table) $ obscured(picture) (8)

blocked(duct1) ^ blocked(duct2) $ stuffy(room) (9)

The �rst domain constraint indicates that an object can be in only one place at any given

time; the second that two di�erent objects cannot be in the same place. The third indicates

that no object can be on top of a rounded object; the bird (more accurately, the bird cage)

and the plant both �t this description. Domain constraint (7) indicates that anything on

a duct blocks it. The �nal two domain constraints de�ne the conditions under which the

portrait will be obscured or the room will be stu�y.

Assuming that we are not prepared to drop the domain constraints appearing at the end

of the above description or any of the \structural" facts appearing on the right hand side

of (3), there is a unique possible world corresponding to the new fact on(tv; chest). This

possible world corresponds to the removal of the fact indicating that the television is on

the bottom shelf of the bookcase. It is necessary to remove this fact since, in light of the

domain constraint indicating that an object can be in only one place at any given time, it is

inconsistent with the new location of the television.

There is also a unique world corresponding to the television moving to the table. As

before, we must remove the fact stating that the television is in the bookcase, but we must

9

also remove the fact that the picture is not obscured. Each of these facts is inconsistent with

the new location.

2.3 Automatic generation of possible worlds

One possible implementation of the ideas presented in Section 2.1 involves constructing the

possible worlds for a setC by examining proofs of :q for the various sentences q 2 C. Suppose

that our theorem prover generates n such proofs �1; . . . ; �n; and that these proofs depend

upon the (possibly overlapping) sets of unprotected database facts S1; . . . ; Sn respectively.7

The intention here is that all of the facts in Si must hold in order for the proof given by �i

to be valid.

To construct a world where the facts in C are consistent, we must remove from our

original scenario enough to ensure that each of these proofs of some :q now fails. Removing

any fact in Si is enough to invalidate the corresponding proof �i, so that a subset T of S [C

with (P \ S) [C � T will be consistent (in the sense that our theorem prover will not

derive inconsistencies from it) if and only if (S � T) \ Si 6= � for each i 2 1; . . . ; n. Since

non-maximal subsets of S [C do not correspond to possible worlds for C in S, we need

only select one member from each of the Si's for deletion from the state description of the

possible world, and we have:

Algorithm 2.3 Let C be as above. Then every possible world for C in S is of the form

S [C � fs1; . . . ; sng (10)

for some choice of s1; . . . ; sn with si 2 Si.

It follows that we can generate all of the possible worlds for C in S by considering each

expression of the form (10) and testing it for maximality. Assuming that jS1j � � � jSnj (the

product of the cardinalities of the various Si's) is manageably small, this will provide us with

an e�ective means for enumerating these possible worlds.

For most actions in domains of interest to AI, this seems to be a reasonable assumption.8

Returning to our usual example, suppose that our set C is

fon(tv; table)g:

There are two proofs of :on(tv; table). One uses the facts that on(tv; bottom-shelf)

and that the television can only be in one place at a time. The other uses the domain fact

:obscured(picture) together with the domain constraint (8). This gives us:

S1 = fon(tv; bottom-shelf)g

S2 = f:obscured(picture)g

7In theory, there will be an in�nite number of proofs of the various :q if there are any, since one can

always add irrelevant steps to any proof. The following algorithms can take the Si to be the minimal subsets

of S from which some :q follows.
8This need not always be the case, however. Consider the action of starting a nuclear war.

10

Each of these sets is of cardinality 1, and we therefore conclude immediately that the unique

possible world for on(tv; table) is as described in Section 2.2.

We will assume throughout this paper that the computational e�ort involved in construct-

ing possible worlds for C in S from proofs of negations of elements of C is small compared

to the e�ort involved in enumerating the proofs themselves. Essentially, this amounts to the

assumption that any particular domain fact appears in only a small number of the proofs

being considered.

The possibility of modifying the approach we have presented to deal with a situation

where this assumption fails is discussed in [7]. The basic idea presented there is to work

through the various proofs of :q for q 2 C in a \breadth-�rst" fashion, attempting to

construct a single possible world for C in S before beginning the construction of another.

This has the advantage that the single world so constructed can then be used to eliminate

potential worlds constructed later that are included in it; further work on these partial worlds

is thus avoided. For problems with a great deal of internal correlation (such as the diagnostic

problems discussed in [7] and [26]), this appears to be a more satisfactory approach than a

straightforward implementation of the ideas presented in this section, with the result that,

once again, the time needed to generate the possible worlds is on a par with that needed to

enumerate the proofs of the negations of facts in C.

The approach we have outlined instead works \depth-�rst" through the proofs of the

various :q, constructing the possible worlds for C in parallel [7]. The e�ect of this will be

to generate many potential worlds early in the construction process, and this will allow us

to obtain lower bounds on the distance to the nearest world for C in S even before all of the

proofs of the :q have been examined. It is argued in [9] that this has substantial impact on

the control of planning search.

2.4 Multiple worlds

Suppose we return to the example in Figure 1, but instead of moving the television onto the

chest or the table, we move it to duct 1. Here, there are two possible worlds that result. As

usual, we must remove the fact giving the original location of the television from both.

Where the two worlds di�er is in their handling of the stated domain fact indicating that

the room is not stu�y, which is inconsistent with the plant being located on duct 2. One

possibility is to simply remove the fact indicating that the room is not stu�y; the two facts

that must be removed are those marked with a # in (3).

The other possibility is to remove the fact that duct 2 is blocked by the plant. In order

to do this, we must remove the fact that the plant is located on duct 2, resulting in the

possible world where the facts marked with an asterisk have been removed.

More precisely we note that there are essentially three proofs of :on(tv; duct1). One

uses the fact that the television is in the bookcase. Another uses the facts that the room is

not stu�y and duct 2 is blocked. The third uses the facts that the room is not stu�y and

the plant is on duct 2 (from which it follows that duct 2 is blocked):

S1 = fon(tv; bottom-shelf)g

11

S2 = f:stuffy(room); blocked(duct2)g

S3 = f:stuffy(room); on(plant; duct2)g

This leads us to consider the four potential worlds:

W1 = S [C � fon(tv; bottom-shelf);:stuffy(room)g

W2 = S [C � fon(tv; bottom-shelf);:stuffy(room); on(plant; duct2)g

W3 = S [C � fon(tv; bottom-shelf); blocked(duct2);:stuffy(room)g

W4 = S [C � fon(tv; bottom-shelf); blocked(duct2); on(plant; duct2)g

The worldsW2 andW3 are non-maximal (W1 is a superset of each) and need not be considered

further.

The two remaining worlds, W1 and W4, correspond to legitimate but distinct possibilities

in light of our limited knowledge of the world. In W1, the television blocks the duct and the

room becomes stu�y; in W4, the plant is dislodged from duct 2 (presumably because of the

power of the ventilation system), and air continues to circulate.

In this particular example, it seems reasonable to assume that moving the television to

a position where it blocks duct 1 will cause the room to become stu�y (W1) rather than

one where the plant has moved (W4). But this is a consequence of facts not recorded in the

database: that the plant is heavy, for example. If it were only a piece of paper blocking

the second duct, we might well prefer a result where the paper had moved to one where the

room became stu�y.

Our formal construction is unable to select between these two possible worlds because

neither of them is a subset of the other. This is to be expected: the information in our

database is insu�cient to determine, in and of itself, which of the two possible worlds will be

the consequence of moving the television to duct 1. Resolving the ambiguity will require the

introduction of additional information about the television, plant and ventilation system.

There are several ways we might capture this; unfortunately, none of the approaches

we are about to suggest is completely satisfactory at this point, and the remainder of this

section should be viewed as preliminary.

One approach is to restrict the possible worlds considered as results of the action by

incorporating domain-dependent information in the possible worlds construction. We do

this by thinking of the subsets of S [C as ordered not by set inclusion, but by some other

partial order � that extends it9 (so that T1 � T2) T1 � T2). We now repeat the de�nition

exactly, de�ning possible worlds to correspond to subsets that are maximal not merely in a

set-theoretic sense, but that are maximal with respect to � as well.

One possible partial order involves prioritizing the facts in the database in some way,

perhaps preferring the removal of facts involving certain predicates over the removal of facts

involving others. For example, we might prefer removing facts involving the relation stuffy

over removing facts involving on.

9In [7], only partial orders on subsets of S were considered. The advantage of the present scheme is that

it allows the partial order to depend upon the set C.

12

The simplest formalization of this requires that we identify some subset T of our initial

world description that contains the preferred facts in S. We now de�ne a partial order on

S by saying that U < V if either U � V or U \ T � V \ T , so that we attempt not to

remove preferred facts from our database. (This partial order is clearly an extension of set

inclusion.)

In our living room example, we might take T to be the collection of facts of the form

on(x; y). When considering moving the television to duct 1, this leads us to select W1 in our

example, since this world reverses fewer on facts than W4 does. (W1 is the world in which

the room becomes stu�y.) Unfortunately, it is not clear how to establish a partial order on

the facts in a database, or even that a single partial order will su�ce for a wide range of

actions.

A second approach to the original ambiguity involves the incorporation of reason main-

tenance information [2, 3] into our database, and to then remove any sentence that becomes

unsupported when a new possible world is constructed.

As an example, we could record the fact that the room's being not stu�y is a conse-

quence of duct 1's being unblocked. Since the result of moving the television to duct 1 is to

block it, :stuffy(room) will become unsupported and will therefore be removed from the

database independent of the status of the fact on(plant; duct2). The new database (where

the stu�ness of the room is undetermined, but the plant stays where it was) is consistent,

and we once again conclude that the room becomes stu�y (since both ducts are blocked).

The advantage of this approach is that it does not depend on the use of domain dependent

information (such as an identi�cation of the set of preferred sentences). The disadvantages

are that it depends upon more powerful theoretical mechanisms, including some formal

understanding of the reason maintenance process. Although progress is being made in this

area [8, 27], di�cult problems remain. It also appears that the simple approach proposed

here may remove more facts than necessary in more complex examples.

A �nal approach resolves the ambiguity between W1 and W4 by appealing to a more

detailed description of the domain under consideration. In the example we are considering,

we might include precise information about the workings of the ventilation system, the weight

of the plant, and basic physical knowledge about air pressure, forces, and so on.

Unfortunately, this sort of a redescription may not always be available, and the com-

putational impact of such an ontological shift is likely to be substantial. This idea is also

discussed in [7].

3 Formalizing actions

Suppose that we are given some initial world description S, together with some collection A

of actions. Each action a 2 A will be de�ned using a precondition p(a) and a consequence

set C(a). Informally, the precondition must hold if the action is to be possible, and the

result of the action is to add the facts in C(a) to the world description. We will assume

throughout this paper that the precondition p(a) is complete, in the sense that the action

13

can de�nitely be performed if the precondition is satis�ed.10 The consequence of the action,

however, will not be assumed complete, since there may be many rami�cations of an action

in any particular situation. Not all of these need be explicitly included in the consequence

set.

Given a world description and an action, we would like to de�ne the result of the action to

be the world obtained by adding to the existing description the consequences of the action.

The di�culty, of course, is that this world may be inconsistent for a variety of reasons,

and we therefore take the result of the action to be the possible world corresponding to its

consequences.

Speci�cally, suppose we are given some world description S and some action a having

consequences C(a), and W (C(a); S) is nonempty. We de�ne the result of a in S, to be

denoted r(a; S), as the intersection of all of the possible worlds for C(a) in S. We adopt this

conservative de�nition in order to ensure that any sentence in r(a; S) is valid in all of the

possible worlds for C(a) in S.11 If W (C(a); S) = �; we take r(a; S) = S. (We include this

for completeness only; an action whose consequences have no possible world is e�ectively

impossible.)

It is straightforward to extend this de�nition to an action sequence; if a1; . . . ; an is a

sequence of actions, we can de�ne a corresponding sequence of situations recursively by:

si =

�
S; if i = 0,

r(ai; si�1); if 0 < i � n.
(11)

We will say that a sequence of actions is viable if si�1 j= p(ai) for all i 2 1; . . . ; n.

As an example, consider once again the scenario of Figure 1. In this domain, there is a

single action move(x; y), which moves the object x to the location y. The preconditions for

the action are that x and y both be clear (or that x is clear and y is the oor), and that y

not be rounded, and the consequence is that x is on y:

p(move(x; y)) = clear(x) ^ [clear(y) _ y = floor] ^ :rounded(y)

C(move(x; y)) = fon(x; y)g:

Consider now the action sequence hmove(tv; duct1); move(chest; table)i where we move

the television to duct 1 and then move the chest to the table.

We have already discussed the �rst of these actions in some detail; certainly this action

is possible in the initial situation. In the absence of domain-speci�c information as discussed

in Section 2.4, the result of this action will be to remove from the domain description all of

the facts that are marked either with a * or with a # in the domain description.

Even in the face of our inability to select between the possible worlds describing the con-

sequences of the �rst action, the precondition to the second remains provable. We therefore

conclude that the entire action sequence is viable.

10Generally, of course, actions have a variety of preconditions. All of these can be conjoined to obtain the

single formula p(a).
11The converse need not hold, since a fact may follow from a disjunction of the facts characterizing the

individual worlds. This can be handled by saying that some sentence p is valid after performing an action a

whenever p is counterfactually implied by the consequences of the action [7].

14

This would not have been the case had the �rst action been to move the television to

the chest. Now, clear(chest) fails in the (unique) possible world obtained by adjoining

on(tv; chest) to our initial world description, so that the precondition to the second action

fails.

4 Comparison with other approaches

In Section 1.2 we gave brief descriptions of the monotonic approach, the default approach,

and the STRIPS approach to reasoning about action. Our objective in this section is to

provide a more rigorous comparison of the computational properties of these approaches

with those of the possible worlds approach.

We will assume we are given some initial state and some sequence of actions, and are

interested in the complexity of 1) determining whether or not some speci�c formula holds

after the actions are executed (for example, the precondition to a hypothetical next action),

and 2) in constructing the entire �nal state reecting the execution of the action sequence.

The symbol � will be used to refer to the number of action types in the domain, and r will

be used to refer to the number of relation symbols appearing in the database. For simplicity,

we will assume that the database contains only atomic facts and their negations. (Note that

neither the default approach nor the possible worlds approach requires this assumption.)

4.1 Space requirements

In order to properly compare the e�ciencies of the di�erent approaches, we need to know

the relationship between the sets of axioms required for each. We therefore start by con-

sidering the relationship between the number of frame axioms required for the monotonic

approach and the number of domain constraints required for the default and possible worlds

approaches.

4.1.1 Frame axioms

In general, for each relation symbol in our domain and each possible action, we will need

one frame axiom, indicating the conditions under which that relation is preserved when the

action takes place. We will also generally need a second rule indicating the conditions under

which the negation of the relation is preserved when the action takes place. Thus for the on

relation and move action we would need the two frame axioms:

on(y; l0)s ^ y 6= x ! on(y; l0)do(move(x;l);s)

:on(y; l0)s ^ l0 6= l ! :on(y; l0)do(move(x;l);s)

In general, if there are � di�erent possible actions, and r di�erent relations, 2�r frame axioms

are required in order to determine which facts persist from one time to the next.

It might seem that some of these 2�r frame axioms may be unnecessary in certain do-

mains. For example, if we know that an object's being blue persists through a move action,

15

why should we need to know that its being non-red also persists? Of course, the fact that

an object can only be one color at a time is a domain constraint; the possibility of replacing

a set of frame axioms with a smaller set of domain constraints is the subject of the following

section.

4.1.2 Domain Constraints

In order to investigate the relationship between frame axioms and domain constraints, we

will take a collection of frame axioms and derive domain constraints from them. The form

of the derived domain constraints will enable us to make the comparison.

Suppose, then, that we have some frame axiom stating that if some condition �+ holds,

then q will persist through an action a. In other words, if q holds in s and the preconditions

to a hold in s, then �+ ! qdo(a;s):

qs ^ p(a)s ! [�+ ! qdo(a;s)]:

We assume in addition that �+ is a minimal persistence requirement, so that q persists only

if �+ holds. This allows us to strengthen the above expression to:

qs ^ p(a)s ! [�+ $ qdo(a;s)]: (12)

Related to the persistence of q is the persistence of :q, and we assume that �
�
is a

persistence condition for it (we only need to examine persistence conditions for q and :q

because of our assumption that the database consists entirely of atomic facts and negations

of atomic facts):

:qs ^ p(a)s ^ �
�
! :qdo(a;s): (13)

Note that we do not need to require �
�
to be minimal.

We will call any �+ satisfying (12) a positive persistence condition for q and a, and any

�
�
satisfying (13) a negative persistence condition for q and a.12

If we denote by c(a) an arbitrary element of the consequence set C(a), we now have the

following:

Theorem 4.1 Let �+ and �
�
be positive and negative persistence conditions for q and a,

and set � = :�+ ^ �
�
. Then if p(a) is a negative persistence condition for �,

p(a)s ! [� ^ c(a)! :q]do(a;s): (14)

Proof. We �rst show that

p(a)s ^ �s ! [c(a) ^ :q]do(a;s): (15)

12Because of the bidirectional implication appearing in (12), it follows that a positive persistence condition

for q is a negative persistence condition for :q, but not necessarily vice versa. In actuality, it is only the

reverse arrow in (12) that we need, and Theorem 4.1 could be strengthened to reect this.

16

It is clear that

p(a)s ! c(a)do(a;s):

With regard to q, we note that if :q holds before the action a, it will hold afterwards by

virtue of �'s implying the negative persistence condition �
�
. Alternatively, if q holds before

the action, :q will once again hold afterwards due to the failure of the positive persistence

condition �+, together with (12).

We rewrite (15) as

p(a)s ! [�s ! (c(a) ^ :q)do(a;s)]: (16)

If p(a) is a negative persistence condition for �, we have from (13) that

:�s ^ p(a)s ! :�do(a;s);

or

p(a)s ! [�do(a;s) ! �s]:

Combining this with (16) gives us

p(a)s ! f[�do(a;s) ! �s] ^ [�s ! (c(a) ^ :q)do(a;s)]g;

so that

p(a)s ! [�! (c(a) ^ :q)]do(a;s); (17)

or

p(a)s ! [� ^ c(a)! :q]do(a;s): (18)

Given this result, it seems appropriate to treat

� ^ c(a)! :q

as a domain constraint for the domain in question, since this constraint holds in any state

that can be reached by performing the action a.13

As an example, consider a simple blocks world situation where q = on(x; y) is the domain

fact, and a = move(u; v) is the action. The frame axiom is given by:

on(x; y)s ^ u 6= x! on(x; y)do(move(u;v);s);

so the positive persistence condition �+ is u 6= x.

A negative persistence condition must satisfy

:on(x; y)s ^ �
�
! :on(x; y)do(move(u;v);s):

Since

:on(x; y)s ^ v 6= y ! :on(x; y)do(move(u;v);s);

13It was in order to treat the result in this fashion that we moved c(a) to the premise of the implication,

taking the result of the theorem to be (18) rather than the stronger (17).

17

we take �
�
= v 6= y. Setting � = (v 6= y ^ u = x), the calculated domain constraint is:

v 6= y ^ u = x ^ on(u; v)! :on(x; y);

which we rewrite as:

v 6= y ^ on(x; v)! :on(x; y):

This is precisely the usual constraint indicating that a block can be in only one place at a

time.

If our persistence conditions are such that some quality always persists through a certain

action type (as with color and shape for the move operation), an examination of (12) makes

it clear that we can take �+ to be �+ = t (truth). Then we obtain � = f , and the associated

domain constraint, � ^ c(a)! :q, will be vacuous.

Here is another example, where � is in fact state-dependent: Again in a blocks world

domain, suppose that if we move a blue block onto another blue block, the block being moved

changes color. Thus, blueness persists if and only if either the block being considered is not

the one being moved, or if the target block is itself non-blue:

blue(x)s ! [blue(x)do(move(u;v);s) $ x 6= u _ :blue(v)]:

We see from this that we can take the positive persistence condition �+ to be x 6= u _

:blue(v). Since non-blueness persists through any motion, we take �
�
to be t, so that

� = [x = u ^ blue(v)].

To see that :� persists, we must check that

x 6= u _ :blue(v)s ! x 6= u _ :blue(v)do(move(u;v);s);

or that

:blue(v)s ! :blue(v)do(move(u;v);s):

Since non-blueness always persists, we conclude that

x = u ^ blue(v) ^ on(u; v)! :blue(x)

holds after moving u to v. The associated domain constraint is:

blue(v) ^ on(u; v)! :blue(u); (19)

indicating that one blue block cannot be on top of another.

This example is one in which the domain constraint posited as a result of an expression

such as that in (14) may not be valid for the domain in question. We might, for example,

be working in a domain where one blue block could be (initially) on top of another, but we

are incapable of moving a blue block onto another.

This can be captured by adding to the consequences of the move operator a marker of the

form moved(u; v), indicating that u has been moved to v. Having done this, (19) becomes:

blue(v) ^ moved(u; v) ^ on(u; v)! :blue(u);

18

capturing exactly the fact that blue blocks cannot be moved to other blue blocks. In general,

similar dummy consequences can be introduced to enable domain constraints to adequately

describe any set of positive and negative persistence conditions. This guarantees the episte-

mological adequacy of using domain constraints.

We will call a domain persistence-constrained if all of the domain constraints can be ob-

tained from the frame axioms without having to insert an additional clause like moved(u; v).

In general, if there are 2�r frame axioms these will lead to at most �r domain constraints.

However, this is far too conservative for a persistence-constrained domain with many rela-

tion and action types. In this case we can expect many relations to persist through many of

the actions, and the result will be that the number of domain constraints will frequently be

much smaller than the number of frame axioms. It also seems likely that many of the frame

axioms in large domains will generate identical domain constraints, further decreasing the

number of domain constraints relative to the number of frame axioms.

Theorem 4.2 In a persistence-constrained domain having 2�r frame axioms the number of

domain constraints is ��r, where � is generally much less than one for large domains.

4.1.3 Explicit consequences

In Section 1.2 we remarked on the fact that the STRIPS, or explicit consequences approach

is not epistemologically adequate for general reasoning about action where non-atomic facts

are allowed. However, this is not a concern for many applications. Assuming that we can

represent all of the e�ects of every action explicitly using STRIPS add and delete lists, what

is the complexity of the resulting descriptions for a domain having ��r domain constraints?

To derive this we consider a single action that, in the possible worlds formulation, adds

a single consequence c to the database. On the average, there will be �� domain constraints

involving the relation symbol appearing in c, and the validity of any subset of these may

require the deletion of some domain fact when the action is executed.

In order to handle the fact that the delete list for some action may vary depending upon

the circumstances in which the action is executed, we will need to split the original action

into a variety of special cases, specifying preconditions, add lists and delete lists for each.

Since there are potentially 2� distinct action subtypes, we get

Theorem 4.3 The space required to describe a domain containing ��r domain constraints

using explicit consequences may grow as rapidly as �2��.

As an example of this, consider the move operator in the example we have been consid-

ering. STRIPS will certainly need to distinguish among situations where the target of the

motion is the table (blocking the picture), where it is a duct (potentially making the room

stu�y) and where it is a location of another type.

Given that the target of the motion is one of the two ducts, STRIPS must also distinguish

between situations where the other duct is blocked (so that the room does indeed become

stu�y) and where the other duct is not blocked. But even this is insu�cient, since moving

an object from one duct to the other will not make the room stu�y. Additionally, we need

19

to consider the possibility that the location we are moving from is either the table (making

the picture visible) or a duct (clearing the room).

The following table summarizes the possibilities. We have described the possible motions

in terms of their starting and ending locations, with \other" indicating a location which is

not the table or a duct. Motions to a duct also indicate whether the other duct is clear or

blocked. We also indicate which of the four potential database facts needs to be deleted (in

addition, of course, to deleting the fact giving the object's initial location).

Deleted fact(s)

Motion type obscured :obscured stu�y :stu�y

other{other

other{table x

other{duct (clear)

other{duct (blocked) x

table{other x

table{duct (clear) x

table{duct (blocked) x x

duct{other x

duct{table x x

duct{duct

Instead of a single move operator, we have eleven. Since there are only seven distinct

possibilities for the delete lists, it is possible to reduce this to a set of seven move operators;

the preconditions to each will be fairly complex, as they will need to determine which of the

eleven cases above applies for any particular motion.

The example with which we have been working is fairly simple, but seems typical of the

exponential di�culties that will be su�ered by any approach that must explicitly list all

consequences of all actions.

4.2 Time

Using the information about space requirements derived in the previous sections, we can

now consider the time complexity of the various approaches.

4.2.1 The monotonic approach

Let us suppose that in order to investigate some proposition q after performing an action, we

need to examine an average of l domain facts to determine whether or not they held before

the action was executed. Determining the color of a block after moving it, for example,

involves simply discovering its color before the motion, so that l = 1 in this case.

To investigate q after a sequence of n actions, we will therefore need to examine l database

facts after n� 1 actions, l2 after n� 2 actions, and so on.

20

There will, of course, be some overlap among the many facts investigated at early times,

and it will be e�ective to cache these facts as we consider them. In general, if we suppose that

we are working in a domain containing d facts in the state description, a random collection

of x of these facts (possibly with repetition) will involve, on average,

d

�
1 �

�
1 �

1

d

�x�

distinct domain facts. (A proof of this can be found in the appendix.) The time spent

investigating q will be spent investigating each of these domain facts at various times; if t is

the time required to investigate each of them, the total time required will be:

nX
i=1

t

8<
:d

2
41 � �

1 �
1

d

�(li)35
9=
; :

A Taylor expansion of this result leads to:

Lemma 4.4 The time taken to investigate the query q after a sequence of n actions in the

monotonic approach is approximately given by:

t(q) =

8<
:
td(n� 1); if ln � d,

tl(ln�1)

l�1 ; if ln � d.
(20)

If we are constructing the entire �nal state, we should clearly cache all of the intermediate

results. This gives us the following:

Theorem 4.5 In a domain described by a large number d of domain facts, the time needed

to investigate the validity of a single proposition q after a sequence of n actions is

tl(ln � 1)

l� 1
;

where t and l are as described above. The time needed to construct the entire state resulting

from the action sequence is

ntd:

4.2.2 The possible worlds approach

The possible worlds approach is somewhat simpler to analyze. Suppose that the result

of an action is to add x new facts q1; . . . ; qx to the database, that ri is the relation symbol

appearing in qi, and that there are c(ri) domain constraints involving ri. The possible worlds

construction requires that we investigate the c(ri) domain constraints for each consequence

qi to determine whether or not they lead to proofs of :qi. If it takes time t0 to examine

21

each domain constraint, the total time spent will therefore be approximately
Px

1 t
0c(ri).

14

Assuming that the constraints are distributed uniformly among the relation symbols, the

time spent constructing the state corresponding to the consequences of the action will be

xt0c=r, where c is the number of constraints on the domain in its entirety, and r is the number

of relation symbols.

Lemma 4.6 The time spent analyzing a sequence of n actions using the possible worlds

approach is given by
nxt0c

r
:

Note that this result is independent of whether we are interested in only a single proposition

q, or are interested in constructing the entire state resulting from the action sequence. This

is because there is a basic computational di�erence between the monotonic approach and

the possible worlds approach. The possible worlds approach proceeds by constructing the

�nal state in its entirety, while the monotonic approach work by considering the validity of

speci�c formulae in the �nal state. (We will see in Section 4.2.3 that similar remarks hold

for the default approach.)

We will assume that the time t0 needed to investigate each domain constraint is compa-

rable to the sum of the time t needed to examine a persistence condition such as �+ and

the time tc needed to examine a consequence c(a) of the (now hypothetical) action a. Using

this, together with the result from Theorem 4.2 that c = ��r we get:

Theorem 4.7 In a persistence-constrained domain, the time spent analyzing a sequence of

n actions using the possible worlds approach is given by

�nx(t+ tc)�: (21)

The relative magnitudes of t and tc may vary depending upon the fashion in which the

domain is being described. In most monotonic approaches, for example, t will be fairly small,

since little inference needs to be done in order to determine if some speci�c domain fact or

persistence condition holds. In the absence of substantial interaction or \chaining" between

the derived domain constraints, we can expect tc to be comparably small, but this need not

always be the case.

4.2.3 The default approach

In [25], Reiter gives a proof procedure for default logics. De�ning PREREQUISITES and

CONSEQUENCES in the obvious fashion for a collection of default rules and denoting by W the

facts known to hold in the default theory, he notes that a formula � will be a member of

some extension of the default theory if we can �nd

14Note that if several domain constraints appear in some proof, t0 will become larger. This has an analog

in the monotonic approach, where it may be necessary to derive information about some domain fact instead

of simply looking for the fact in the database. This would be reected in an increase of the t appearing in

Theorem 4.5.

22

. . . a subset D0 of the defaults such that W [CONSEQUENCES(D0) ` �. For

i � 1, if Di�1 has been determined, then determine a subset Di of the defaults

such that W [CONSEQUENCES(Di) ` PREREQUISITES(Di�1). If, for some k, W `

PREREQUISITES(Dk�1) and if W [
k�1
i=0 CONSEQUENCES(Di) is satis�able, then a

proof of � has been found.

Even in the best case where k = 1, we will have to investigate the satis�ability of

W [CONSEQUENCES(D0). Since � is entailed by D0, this can be no easier than investigating

the satis�ability of W [f�g.

Any practical implementation will assume W itself to be consistent, so that the satis-

�ability of W [f�g can be determined simply by attempting to prove :� from W . This

will involve investigating each of the c=r domain constraints; if the time needed to investi-

gate each is comparable to the time t0 needed to investigate a single domain constraint in

the possible worlds approach, we conclude that it will take time t0c

r
to examine all of them.

Substituting t0 = t+ tc and c = ��r, we obtain:

Theorem 4.8 The time spent analyzing a sequence of n actions using the default approach

is as given by Theorem 4.5, with t replaced with

(t+ tc)��:

We should also remark at this point that there are instances where the default and

possible worlds approaches will generate di�erent situations corresponding to the results of

some speci�c action. In order to make this point precise, we need the following result:

Theorem 4.9 Let S be some collection of sentences, and P the protected sentences in our

language. Now consider a default theory in which the default rules are given by

: w

w

for each w 2 S�P , so that w holds in the absence of information proving it false. The facts

in the default theory consist of q, together with the sentences in P .

The possible worlds for q in S are in natural correspondence with the extensions of the

above default theory.

A proof of this result can be found in [7].

This correspondence is also discussed in [26]; Reiter goes on to show how it is possible to

capture some sorts of domain-dependent information in this framework, although it does not

appear that possible worlds generated using arbitrary partial orders will always correspond

naturally to results obtained using some default theory.

It follows from Theorem 4.9 that if there is a unique possible world corresponding to the

consequences of an action, a statement will be true in that possible world if and only if it

follows from the default rule given by (1). But if there are multiple extensions or possible

worlds (corresponding perhaps to an action such as move(tv; duct1) whose consequences are

23

only partially known), the proof procedure given by Reiter will accept any statement that

is true in any of these possible worlds, while the construction we have given, based as it is

upon the intersection of the possible worlds, will require a potential plan to achieve its goal

for any of the possible outcomes of the action or actions in question. In realistic planning

situations, this seems likely to be the more e�ective approach, since it requires the planning

agent to consider all possible outcomes of his actions, as opposed to hoping optimistically

that they will result in his achieving his goal. Unfortunately, Reiter gives no method for

determining whether or not a formula holds in every extension of a default theory.

4.2.4 STRIPS

Because STRIPS modi�es its database directly using add and delete lists, the principal com-

putational cost involved in this approach is simply that of �nding which of the �2�� possible

add and delete lists should be used when a particular action is executed. Locating any par-

ticular add and delete list will take time at best logarithmic in the number of possibilities,

so we can expect the time taken by the STRIPS approach to be on the order of t�� (the t

appears as an approximation to the time needed to determine if some particular add-delete

pair is appropriate in any given situation). Analyzing a sequence of n actions can therefore

be expected to take time nt��.

4.3 Comparisons

We can summarize the results of the previous sections in the following:

Theorem 4.10 In a persistence-constrained domain with � action types, r relations, and a

large number d of domain facts, the space and time required by the various approaches is:

possible worlds monotonic default STRIPS

space ��r 2�r ��r �2��

time

single query nx(t+ tc)��
tl(ln�1)

l�1
(t+tc)��l(ln�1)

l�1
nt��

entire state nx(t+ tc)�� ntd n(t+ tc)��d nt��

One can expect x, t, tc, l and � to all be approximately independent of the size of the

domain being investigated. If we assume additionally that d � x (few facts change with

each action), and that � is su�ciently small that d� ��x as well, we can conclude that the

possible worlds approach will be more e�cient than the monotonic approach when either:

1. l > 1 and n is large, or

2. The entire �nal state needs to be constructed.

24

The �rst condition corresponds to a case where a great many facts need to be investigated

at early times in order to determine the validity of even a single one at a later time.

If x = 1, so that each action has a single consequence, some simple algebraic manipulation

shows that the possible worlds approach is uniformly more e�cient than the default one.

Informally, the reason for this is that both the default approach and the possible worlds

approach involve a complete search through the proof tree for some proposition. In the

default case, the proposition being considered is the negation of the consequence of the default

rule; a complete search is necessary because the default rule is generally valid. In the possible

worlds approach, we must explicitly examine all proofs of the negations of the consequences

of the action being considered. These tasks are of comparable computational complexity;

the di�erence between the approaches is that the possible worlds approach requires only x

such proof attempts, while the default approach will in general require many.

Finally, we see that the STRIPS approach is exponentially expensive in terms of the

space used to describe a particular domain; although this approach needs less time than the

others to evaluate the results of any particular action, the times needed by the STRIPS and

possible worlds approaches are roughly comparable. (This is true even though the activities

performed by the two approaches are completely di�erent: The possible worlds approach

is inferentially investigating domain constraints, while the STRIPS approach is searching

through an extensive collection of add and delete lists.)

5 Conclusion

In this paper we have described an approach to reasoning about action using possible worlds.

The approach involves keeping a single model of the world that is updated when actions are

performed. The update procedure involves constructing the nearest world to the current one

in which the consequences of the actions under consideration hold. The way we �nd the

nearest world is to construct proofs of the negation of the explicit consequences of the ex-

pected action, and remove a premise in each proof from the current world. Computationally,

this construction procedure appears to be tractable for worlds like our own where very few

things tend to change with each action, or where change is regular.

The approach developed here is in some sense a formalized extension of the STRIPS

approach; in both cases, a single model of the world is maintained, which is updated to

reect the result of any particular action. The di�erence is that in STRIPS, consistency

is maintained after the execution of an action via the delete lists; in our approach, it is

maintained inferentially using the constraints describing the domain in question. In some

sense, the STRIPS descriptions of the actions \compile" the interactions between these

actions and the domain constraints into the delete list.

In this paper we have focussed speci�cally on the frame and rami�cation problems, but

have ignored the quali�cation problem. As mentioned earlier, we have applied the possible

worlds construction described here to the quali�cation problem as well. In these cases one

is forced to decide among di�erent possible worlds: worlds in which the action is prevented

by hidden quali�cations, and worlds in which the consequences of the action overcome the

25

quali�cations. This work is described in detail in [11, 12].

We have also applied the possible worlds approach described here to the construction of

a working planning system. For planning problems we construct the closest possible world

to the initial state for which the desired goal holds. The procedure for constructing this

state is the same as that described in Section 3. The planning process is guided by seeking

those actions that will lead to the nearest possible world from the initial one where a goal or

subgoal holds. This planning system and the control procedure based on nearness of possible

worlds are described in detail in [9, 10].

Appendix

Proposition A.1. Suppose we have an urn containing d distinct items. Then if we make x

selections from the urn, replacing each item selected, the number of di�erent items selected

will be, on average,

d

�
1 �

�
1 �

1

d

�x�
:

Proof. Suppose that we �x d, and denote by p(n; x) the probability of drawing n di�erent

items in x drawings, and by f(x) the expected number of items selected. We are therefore

trying to show that

f(x) = d

�
1�

�
1�

1

d

�x�
:

If we are to select n items in x+ 1 drawings, then we must either select n � 1 items in

the �rst x drawings, followed by selecting a new item in the last drawing, or select n items

in the �rst x drawings, followed by selecting an old item in the last one. Thus

p(n; x + 1) = p(n; x)
n

d
+ p(n� 1; x)

�
1 �

n� 1

d

�
:

We also have that

f(x) =
dX
1

ip(i; x);

so that

f(x+ 1) =
dX
1

ip(i; x+ 1)

=
dX
1

ip(i; x)
i

d
+

dX
1

ip(i� 1; x)

�
1�

i� 1

d

�

=
dX
1

p(i; x)
i2

d
+

d�1X
0

jp(j; x)

�
1�

j

d

�
+

d�1X
0

p(j; x)

�
1�

j

d

�

= dp(d; x) +
dX
0

jp(j; x)� dp(d; x) +
dX
0

p(j; x)�
1

d

dX
0

jp(j; x)

26

=

�
1�

1

d

�
f(x) + 1:

We also know that f(0) = 0.

For x = 0, the expression in the statement of the theorem does indeed reduce to 0; we

must therefore show that it satis�es the recursion relation appearing above. But we have:

f(x+ 1) = d

"
1 �

�
1 �

1

d

�x+1
#

= d

�
1�

�
1�

1

d

�x �
1�

1

d

��

= d � d

�
1�

1

d

�x

+

�
1�

1

d

�x

= f(x) +

"
1�

f(x)

d

#

=

�
1�

1

d

�
f(x) + 1:

Acknowledgement

This work has been supported by DARPA under grant number N00039-86-C-0033 and by

ONR under grant number N00014-81-K-0004. We would like to thank the Logic Group

for providing, as ever, a cooperative and stimulating | and demanding | environment in

which to work. We would also like to thank Mike Genesereth, Vladimir Lifschitz, Drew

McDermott, Yoav Shoham, Narinder Singh and Marianne Winslett for their comments on

various drafts of this paper.

References

[1] J. F. Allen. Towards a general theory of action and time. Arti�cial Intelligence, 23:123{

154, 1984.

[2] J. de Kleer. An assumption-based truth maintenance system. Arti�cial Intelligence,

28:127{162, 1986.

[3] J. Doyle. A truth maintenance system. Arti�cial Intelligence, 12:231{272, 1979.

[4] R. Fagin, J. Ullman, and M. Vardi. On the semantics of updates in databases. In

Proceedings Second ACM Symposium on Principles of Database Systems, pages 352{

365, Atlanta, Georgia, 1983.

[5] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.

27

[6] J. J. Finger. Exploiting Constraints in Design Synthesis. PhD thesis, Stanford Univer-

sity, Stanford, CA, 1987.

[7] M. L. Ginsberg. Counterfactuals. Arti�cial Intelligence, 30:35{79, 1986.

[8] M. L. Ginsberg. Multi-valued logics. In Proceedings of the Fifth National Conference

on Arti�cial Intelligence, pages 243{247, 1986.

[9] M. L. Ginsberg. Possible worlds planning. In Proceedings of the 1986 Workshop on Plan-

ning and Reasoning about Action, pages 213{243, Timberline, Oregon, 1986. Morgan

Kaufmann.

[10] M. L. Ginsberg and D. E. Smith. Possible worlds planning. In preparation.

[11] M. L. Ginsberg and D. E. Smith. Possible worlds and the quali�cation problem. In

Proceedings of the Sixth National Conference on Arti�cial Intelligence, pages 212{217,

1987.

[12] M. L. Ginsberg and D. E. Smith. Reasoning about action II: The quali�cation problem.

Arti�cial Intelligence, 35:311{342, 1988.

[13] C. C. Green. Theorem proving by resolution as a basis for question-answering systems.

In B. Meltzer and D. Mitchie, editors, Machine Intelligence 4, pages 183{205. American

Elsevier, New York, 1969.

[14] S. Hanks and D. McDermott. Nonmonotonic logics and temporal projection. Arti�cial

Intelligence, 33:379{412, 1987.

[15] V. Lifschitz. On the semantics of STRIPS. In Proceedings of the 1986 Workshop on

Planning and Reasoning about Action, Timberline, Oregon, 1986.

[16] V. Lifschitz. Pointwise circumscription: Preliminary report. In Proceedings of the Fifth

National Conference on Arti�cial Intelligence, pages 406{410, 1986.

[17] V. Lifschitz. Formal theories of action. In Proceedings of the 1987 Workshop on the

Frame Problem in Arti�cial Intelligence, Lawrence, Kansas, 1987.

[18] V. Lifschitz. Pointwise circumscription. In M. L. Ginsberg, editor, Readings in Non-

monotonic Reasoning. Morgan Kaufmann, Los Altos, CA, 1987.

[19] J. McCarthy. Programs with commmon sense. In M. Minsky, editor, Semantic Infor-

mation Processing, pages 403{418. MIT, Cambridge, 1960.

[20] J. McCarthy. Epistemological problems of arti�cial intelligence. In Proceedings of the

Fifth International Joint Conference on Arti�cial Intelligence, pages 1038{1044, Cam-

bridge, MA, 1977.

28

[21] J. McCarthy. Circumscription { a form of non-monotonic reasoning. Arti�cial Intelli-

gence, 13:27{39, 1980.

[22] J. McCarthy. Applications of circumscription to formalizing common sense knowledge.

Arti�cial Intelligence, 28:89{116, 1986.

[23] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of

arti�cial intelligence. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 4,

pages 463{502. American Elsevier, New York, 1969.

[24] R. Moore. Semantical considerations on nonmonotonic logic. Arti�cial Intelligence,

25:75{94, 1985.

[25] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132, 1980.

[26] R. Reiter. A theory of diagnosis from �rst principles. Arti�cial Intelligence, 32:57{95,

1987.

[27] R. Reiter and J. de Kleer. Foundations of assumption-based truth maintenance sys-

tems: Preliminary report. In Proceedings of the Sixth National Conference on Arti�cial

Intelligence, pages 183{188, 1987.

[28] Y. Shoham. Chronological ignorance. In Proceedings of the Fifth National Conference

on Arti�cial Intelligence, pages 389{393, 1986.

29

